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toll while others were left to wander the shore for a hun-
dred years before being delivered. This review focuses on 
another group of ferrymen: the Na +  taurocholate cotrans-
porting polypeptide (NTCP), the bile salt export pump 
(BSEP), the apical sodium-dependent bile acid transporter 
(ASBT), and the organic solute transporter OST � -OST � , 
the major bile acid transporters that control the fate of bile 
acids, either absorption and enterohepatic cycling or ex-
cretion and elimination from the body. The role of these 
transporters in maintaining bile acid homeostasis and their 
regulation under physiological and pathophysiological 
conditions is discussed. This article complements recent 
comprehensive reviews of bile acid chemistry and physiol-
ogy ( 1 ), bile acid transporter structure and function ( 2, 3 ), 
bile acid synthesis ( 4 ), and bile acid signaling ( 5–7 ). 

 Bile acids are synthesized from cholesterol in the liver 
and secreted into the small intestine where they facilitate 
absorption of fat-soluble vitamins and cholesterol ( 1 ). The 
majority of bile acids are reabsorbed from the intestine 
and returned to the liver via the portal venous circulation. 
At the hepatocyte sinusoidal membrane, bile acids are ex-
tracted and resecreted into bile ( 8 ). This enterohepatic 
circulation of bile acids is an extremely effi cient process; 
less than 10% of the intestinal bile acids escapes reabsorp-
tion and is eliminated in the feces. In the small intestine, 
bile acids are absorbed by both passive and active mecha-
nisms ( 9 ). Whereas passive absorption occurs down the 
length of the intestine, active absorption of bile acids is 
restricted to the ileum ( 10, 11 ). In man and all other ver-
tebrates examined to date, the ileal epithelium has devel-
oped an effi cient transport system for the active reclamation 
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 Transporters have always assumed a prominent place in 
biology and human lore. Perhaps the most well known 
transporter is Charon, the ill-tempered old ferryman of 
Greek mythology whose task was to transport souls of the 
deceased across the river Acheron into Hades. Charon 
would ferry into Hades only those souls that would pay his 
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ter fi rst undergoing N-acyl amidation to taurine or glycine 
( 1 ). Whereas bile acid concentrations within the hepato-
cyte are presumed to be in the micromolar range, canali-
cular bile acid concentrations are as much as 1000-fold 
higher, necessitating active transport across the canalicu-
lar membrane ( 23 ). BSEP is the transporter responsible 
for canalicular transport of the major bile acid species 
( 24 ), whereas secretion of sulfated bile acids or unusual 
bile acid such as tetra-hydroxylated forms is mediated by 
other ABC transporters, including the multidrug resis-
tance protein (MRP)-2 ( ABCC2 ) ( 25, 26 ) and multidrug 
resistance protein (MDR)-1 ( ABCB1 ) ( 27 ). 

 An area of active investigation is the identifi cation and 
analysis of transporters responsible for the sinusoidal ef-
fl ux of bile acids and other organic solutes from the inte-
rior of the hepatocyte into the space of Disse. Whereas 
sinusoidal membrane bile acid transport is overwhelm-
ingly in the direction of uptake under normal physiologi-
cal conditions, bile acids can also be effl uxed as an 
important protective mechanism to reduce bile acid over-
load under cholestatic conditions ( 28 ). Much of this work 
has focused on members of the MRP ( ABCC ) family of 
ATP-dependent transporters, in particular, MRP3 and 
MRP4 ( 29–31 ), and on the heteromeric transporter, 
OST � -OST �  ( 32, 33 ). MRP3 and MRP4 are expressed on 
the sinusoidal membrane of hepatocytes ( 29, 34 ) and have 
bile acid transport ( 30 ) or glutathione-bile acid cotrans-
port activity ( 35 ). The expression of these transporters is 
induced under cholestatic conditions to promote bile acid 
effl ux ( 3, 33, 36–40 ), thus lowering the concentration in 
the hepatocyte and decreasing the likelihood of apoptosis 
or necrosis ( 41 ). Our understanding of the relative contri-
bution of the different effl ux transporters is still develop-
ing; however, the most recent results point toward 
especially important roles of MRP4 and OST � -OST �  ( 33, 
39, 42 ). The increased expression of these transporters is 
an important part of the adaptive response to conditions 
of bile acid overload that also includes downregulation of 
the major liver bile acid uptake transporters, NTCP, and 
members of the OATP family ( 28 ). 

 NTCP 

 NTCP (gene name  SLC10A1 ) is the founding member 
of the SLC10 family of solute carrier proteins, which 
includes two bile acid carriers ( SLC10A1 /NTCP and 
 SLC10A2 /ASBT), one steroid sulfate transporter 
( SLC10A6 /SOAT), and four orphan carriers ( SLC10A3 , 
 SLC10A4 ,  SLC10A5 ,  SLC10A7 ) ( 43–45 ). NTCP, a 349 
amino acid membrane glycoprotein, functions as an elec-
trogenic sodium-solute cotransporter and moves 2 or more 
Na +  ions per molecule of solute ( 46, 47 ). NTCP’s major 
physiological substrates include all the major glycine and 
taurine-conjugated bile acids ( 48–52 ). Depending on the 
structure of the bile acid and NTCP ortholog, unconju-
gated bile acids are moderate or weak substrates ( 50, 53, 
54 ) and sulfated bile acids appear to be only weakly trans-
ported ( 55 ). In contrast to NTCP, members of the OATP 

of bile acids ( 1 ). The enterohepatic circulation maintains 
a bile acid pool size of approximately 4 mg in mice and 2 
to 4 g in humans. This pool cycles multiple times per meal 
( 12, 13 ) and as such, the intestinal bile acid absorbed may 
be as much as 20 mg/day in mice and 30 g/day in humans. 
Hepatic conversion of cholesterol to bile acid balances fecal 
bile acid excretion and this process represents a major route 
for elimination of cholesterol from the body ( 14, 15 ). 

 Evolution of an ileal active transport system and gall-
bladder improved the effi ciency of intestinal lipid absorp-
tion by dissociating hepatic bile acid secretion from bile 
acid synthesis. This ensures a continuous supply of bile ac-
ids to be used repeatedly for lipid absorption during the 
digestion of a single meal or multiple meals throughout 
the day ( 16 ). Effi cient intestinal reabsorption and hepatic 
extraction of bile acids also enables a very effective recy-
cling and conservation mechanism that largely restricts 
these potentially cytotoxic detergents to the intestinal and 
hepatobiliary compartments. At a fundamental level, the 
bile acid enterohepatic circulation can be viewed as a se-
ries of storage chambers (gallbladder, small intestine), 
valves (sphincter of Oddi, ileocecal valve), mechanical 
pumps (canaliculi, biliary tract, small intestine), and 
chemical pumps (hepatocytic and enterocytic transport-
ers). Over the past two decades, signifi cant progress has 
been made to identify the major hepatic and intestinal 
transporters that function to maintain the enterohepatic 
circulation of bile acids ( 3, 17 ). These are summarized in 
  Fig. 1  . 

 HEPATOCELLULAR TRANSPORT OF BILE ACIDS 

 Approximately 95% of the bile acids secreted into bile 
are derived from the recirculating pool. To maintain this 
process, liver parenchymal cells must transport bile acids 
effi ciently from the portal blood into bile. This vectorial 
trans-hepatocellular movement of bile acids is a remark-
ably concentrative transport process that is driven by a 
distinct set of primary (ATP-dependent), secondary 
(Na +  gradient-dependent), and tertiary (OH  �   or HCO 3  

 �  -
dependent anion exchange) transport systems at the sinu-
soidal and canalicular plasma membranes ( 2, 3 ). 
Hepatocellular uptake of bile acids occurs against a pre-
sumed unfavorable electrochemical gradient ( 18, 19 ) via 
sodium-dependent and independent mechanisms. The 
uptake of conjugated (i.e., N-acyl amidated with taurine or 
glycine) bile acids, such as taurocholate, at the sinusoidal 
membrane is mediated predominantly (>75%) by second-
ary active Na + -dependent transport. In contrast to conju-
gated bile acids, Na + -dependent uptake accounts for less 
than half of the uptake of unconjugated bile acids ( 20–22 ). 
The Na + -dependent sinusoidal membrane uptake is medi-
ated by the NTCP, whereas members of the organic anion 
transporting polypeptide   (OATP) family are responsible 
for the Na + -independent transport. 

 After uptake, conjugated bile acids are shuttled across 
the hepatocyte to the canalicular membrane for secretion 
into bile; unconjugated bile acids follow a similar path af-

 by guest, on June 14, 2012
w

w
w

.jlr.org
D

ow
nloaded from

 

http://www.jlr.org/


2342 Journal of Lipid Research Volume 50, 2009

isolated hepatocytes;  3 ) electrogenic Na + -taurocholate up-
take ( 46 );  4 ) appropriate tissue-specifi c expression in the 
liver;  5 ) similar ontogeny for Na + -dependent bile acid up-
take and NTCP expression in development ( 61 ); and  6 ) 
the fi nding that NTCP-specifi c antisense oligonucleotides 
decreased Na + -dependent taurocholate uptake by more 
than 90% in rat liver mRNA-injected  Xenopus  oocytes ( 62 ). 
Although the presence of additional Na + -dependent bile 
acid transporters, such as microsomal epoxide hydrolase, 
has been suggested ( 63 ), the current evidence indicates 
that NTCP accounts for most, if not all, hepatic sinusoidal 
membrane Na + -dependent bile acid transport ( 43 ). How-
ever, genetic evidence supporting a primary role of NTCP 
in hepatic sinusoidal bile acid uptake is still lacking. NTCP 
null mice have not yet been described. Polymorphisms 
that interfere with bile acid transport in vitro were re-
ported as part of an analysis of human NTCP genotypes in 
different ethnic groups ( 64 ). Unfortunately, there was no 
description of the in vivo bile acid phenotype associated 
with those polymorphisms. In addition, whereas inherited 
disorders characterized by a relatively isolated elevated 
plasma bile acid level (hypercholanemia; part of the pre-

family expressed on the hepatocyte sinusoidal membrane, 
such as Oatp1a1 ( Slco1a1 ), effi ciently transport unconju-
gated or sulfated bile acids, suggesting that these carriers 
participate in the hepatic uptake of those bile acid species 
in vivo ( 50, 56, 57 ). The high level of NTCP expression at 
the sinusoidal membrane of hepatocytes and NTCP’s high 
affi nity for conjugated bile acids promotes their effi cient 
extraction from portal blood. Thus, NTCP functions to 
maintain the enterohepatic circulation of bile acids and 
keeps plasma concentrations at a minimum. Unlike the 
related ileal apical sodium bile acid transporter (ASBT or 
IBAT;  SLC10A2 ), NTCP also interacts with a variety of 
drugs and steroids ( 51, 58–60 ). Although it is not yet clear 
how many of these compounds are competitive or non-
competitive inhibitors of NTCP versus actual substrates, 
this broader inhibitor profi le supports a possible role 
for NTCP in the clearance of some drugs or drug 
metabolites. 

 The properties of NTCP satisfi ed all the functional crite-
ria for hepatocytic Na + -coupled bile acid uptake, includ-
ing:  1 ) preferential high affi nity transport of conjugated 
bile acids;  2 ) kinetics for taurocholate transport similar to 

  Fig.   1.  Enterohepatic circulation of bile acids. Localization of the major transport proteins, NTCP, BSEP, 
ASBT, and OST � -OST �  of the enterohepatic circulation responsible for bile acid (BA) movement across 
hepatocytes, cholangiocytes, ileocytes (ileal enterocytes), and renal proximal tubule cells. In the liver, bile 
acids are effi ciently extracted from portal blood by the Na + -taurocholate cotransporting polypeptide (NTCP; 
gene symbol  SLC10A1 ) and resecreted across the canalicular membrane by the bile salt export pump (BSEP; 
gene symbol  ABCB11 ). A fraction of the bile acids are absorbed by the epithelial cells lining the biliary tract 
(cholangiocytes) and sent back to the liver for resecretion into bile, a process termed cholehepatic shunting. 
The transcellular transport of bile acids across the biliary epithelium is mediated by the apical sodium bile 
acid transporter (ASBT, gene symbol  SLC10A2 ) and the heteromeric transporter, OST � -OST � , on the api-
cal and basolateral membranes, respectively. Bile acids ultimately empty from the biliary tract into the small 
intestine where they are effi ciently absorbed in the terminal ileum by the ASBT and OST � -OST �  and re-
turned to the liver in the portal circulation. Bile acids that escape hepatic fi rst-pass clearance are fi ltered by 
the kidney. Rather than be excreted in the urine, the bile acids are reabsorbed by the renal proximal tubule 
cells via the ASBT and OST � -OST �  and sent back to the liver for uptake and resecretion into bile. (Adapted 
with permission from Mosely RH: Bile secretion and cholestasis. In Kaplowitz N: Liver and Biliary Disease. 
2nd ed. Philadelphia, Williams and Wilkins, 1996, p 194).   
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independent mechanisms must exist to mediate this re-
pression of NTCP expression ( 80 ). The fi nding that the 
rat, mouse, and human NTCP promoters all include a con-
sensus Foxa2 binding motif led to the suggestion that this 
may be a common pathway for NTCP regulation ( 73 ). 
However, recent studies argue against a direct role of 
Foxa2 in mediating the repression of NTCP by bile acids 
( 81 ). Finally, some of the regulatory actions of bile acids 
are mediated through activation of the c-Jun N-terminal 
kinase (JNK) ( 82 ). JNK-dependent phosphorylation of 
RXR �  has been shown to reduce RXR � :RAR �  binding 
and activation of the rat NTCP promoter ( 83 ), providing a 
potential mechanism to regulate NTCP expression inde-
pendent of SHP. 

 With regard to infl ammation, NTCP expression is rap-
idly downregulated following administration of lipopoly-
saccharide (LPS) or the infl ammatory cytokines tumor 
necrosis factor alpha (TNF � ), interleukin (IL)-1 � , or IL-6 
( 84–87 ). Under conditions of infl ammation-induced 
cholestasis, IL-1 �  appears to play a major role in regulat-
ing NTCP expression ( 88 ), although there must be some 
redundancy because LPS still downregulated NTCP ex-
pression in IL-1 �  receptor and TNF �  receptor1 knockout 
mice ( 89 ). In contrast to IL- �  or TNF � , IL-6 does not ap-
pear to be important for downregulation of NTCP during 
the early stages of LPS-induced infl ammation ( 85, 89 ). The 
downregulation of NTCP is mediated by FXR-independent 
mechanisms ( 90, 91 ) that potentially involve decreased 
RXR �  expression, inactivation of RXR �  by phosphoryla-
tion via mitogen-activated protein (MAP) kinase 4 and 
JNK ( 83, 92 ), and decreased nuclear levels of RXR �  
( 93–95 ). In addition to affecting RXR � :RAR � , LPS could 
downregulate NTCP expression by reducing HNF-1 �  ex-
pression and activity ( 86, 88 ). The regulation via HNF-1 �  
may be secondary to LPS or IL-1 �  downregulation of 
HNF-4 �  ( 96 ), an important positive regulator of HNF-1 �  
expression ( 97, 98 ). 

 In addition to regulation by substrate or under condi-
tions of infl ammation-induced cholestasis, NTCP is also 
downregulated in other forms of cholestatic liver injury, 
including obstructive, drug- or toxin-induced, and 
estradiol-induced cholestasis ( 67 ). In the early stages of 
obstructive cholestasis, NTCP transcription is downregu-
lated by SHP-dependent mechanisms similar to those 
involved in the regulation by bile acids ( 90, 91, 99 ). At 
later stages, proinfl ammatory cytokines may contribute to 
the sustained downregulation of NTCP expression via 
RXR � :RAR � -dependent mechanisms ( 91 ). NTCP expres-
sion is regulated during drug- or toxin-induced liver in-
jury and during the liver regeneration that occurs in 
response to injury. After partial hepatectomy or in the car-
bon tetrachloride model of toxic liver injury, NTCP mRNA 
expression is rapidly decreased ( 100, 101 ). Inactivation of 
TNF �  but not IL-1 �  prevented this downregulation of 
NTCP during liver regeneration, underscoring the cen-
tral role of TNF �  in the regulation of NTCP during this 
process ( 88 ). 

 With regard to hormones, one of the best-characterized 
mechanisms of transcriptional regulation is the induction 

dicted phenotypes for a defect in hepatic bile acid uptake) 
have been described, mutations in genes other than NTCP, 
such as the tight junction proteins ZO-2 and claudin-1, 
were found to be responsible for these diseases ( 65, 66 ). 
These fi ndings leave open the possibility that an isolated 
NTCP gene defect may be asymptomatic as hepatocytes 
also express Na + -independent bile acid transporters. 

 Regulation of NTCP expression and activity 
 Substrate, cytokines, liver injury, and hormones all regu-

late transcription of the NTCP gene ( 2, 67 ). Although the 
molecular mechanisms and transcription factors may dif-
fer, a common theme among these major regulatory path-
ways is the suppression of NTCP gene expression as an 
adaptive response to reduce bile acid entry into the hepa-
tocyte. In fact, the short-term modulation of NTCP activity 
to match Na + -dependent bile acid uptake to the bile acid 
load under physiological conditions may be largely con-
trolled by posttranscriptional mechanisms ( 68 ). Under 
pathophysiological conditions, numerous mechanisms ex-
ist to decrease NTCP transcription. As described below, 
bile acids feed back to downregulate NTCP gene transcrip-
tion by FXR-dependent and independent mechanisms to 
prevent cytotoxic bile acid accumulation. NTCP transcrip-
tion is also decreased with different forms of cholestatic 
liver disease, including those associated with infl amma-
tion, ethinylestradiol and pregnancy, obstruction, and 
drugs or toxins, again as part of a coordinated response to 
reduce the extent of liver injury ( 67 ). 

 With regard to substrate, NTCP transcription is down-
regulated in a complex fashion by bile acids via direct or 
indirect mechanisms that potentially involve farnesoid 
X receptor (FXR), small heterodimer partner (SHP), 
retinoic acid receptor alpha:retinoid X receptor alpha 
(RAR � :RXR � ), hepatocyte nuclear factor (HNF)-1 � , HNF-
4 � , liver receptor homolog (LRH)-1, and forkhead box A2 
(FOXA2) (HNF-3 � ) ( 69–76 ). FXR does not interact di-
rectly with the NTCP promoter but induces expression of 
other factors to indirectly repress NTCP expression. In the 
rat, bile acids act via FXR to induce the expression of SHP, 
which in turn can interfere with RXR � :RAR �  activation of 
the NTCP promoter. SHP may also be acting via HNF-4 �  
and HNF-1 �  to repress rat NTCP expression ( 72, 73 ). In 
the mouse, NTCP expression is signifi cantly reduced in 
HNF-4 �  null mice ( 77 ) and direct promoter analysis re-
vealed HNF-4 �  strongly activates NTCP expression ( 78 ). 
HNF-4 � , working in conjunction with peroxisome 
proliferator-activated receptor- �  coactivator-1 �  (PGC-1 � ), 
strongly activates NTCP expression and may be important 
for the increase in NTCP expression and liver sinusoidal 
bile acid uptake observed during fasting ( 79 ). In addition 
to the pathways involving RXR � :RAR �  and HNF-1 � , sev-
eral lines of evidence indicate that other mechanisms must 
exist for bile acid-dependent downregulation of NTCP. 
First, although HNF-1 �  and RXR � :RAR �  bind and acti-
vate the rat NTCP promoter, these factors do not appear 
to activate the mouse or human NTCP minimal promoters 
( 73 ). Second, NTCP mRNA expression is still decreased by 
cholic acid feeding in SHP null mice, indicating that SHP-
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zone, and glibenclamide, are not substrates but interact 
with BSEP and inhibit bile acid export. Direct inhibition 
of BSEP may be an important mechanism of hepatotoxic-
ity for drugs inducing cholestasis ( 24, 117, 124 ). 

 Defects in BSEP are responsible for inherited forms of 
liver disease. Depending on the clinical course, BSEP defi -
ciency is categorized as PFIC2 or benign recurrent intra-
hepatic cholestasis (BRIC) type 2. PFIC2 is associated with 
low bile acid secretion, failure to thrive, intractable pruri-
tus, progressive cholestasis, and a signifi cantly increased 
risk for hepatobiliary malignancy ( 121, 125 ). In patients 
with PFIC2, BSEP protein is typically absent or signifi cantly 
reduced in liver biopsy specimens, suggesting that these 
mutations impair BSEP synthesis, cellular traffi cking, or 
stability ( 121 ). BRIC2 is associated with milder forms of 
liver disease and with less severe BSEP defects such as mis-
sense mutations ( 126 ). However, it should be noted that 
some missense mutations cause severe forms of BSEP defi -
ciency by altering premRNA splicing as described in a re-
cent comprehensive analysis of the major BSEP sequence 
variants ( 127 ). The BSEP mutations associated with milder 
disease may also confer increased risk for development of 
acquired forms of cholestasis, including intrahepatic 
cholestasis of pregnancy (ICP) and drug-induced cholesta-
sis ( 128, 129 ). 

 Regulation of BSEP expression and activity 
 BSEP mRNA expression is induced when hepatocyte 

bile acid levels are elevated, such as following dietary chal-
lenge with bile acids ( 130 ), or under certain cholestatic 
conditions ( 32, 131, 132 ). This is due to a direct activation 
of the human and rodent BSEP genes by bile acids acting 
via FXR ( 133, 134 ). In addition to identifi cation of an 
FXR-responsive element in the BSEP promoter, inactiva-
tion of FXR in mice results in low levels of BSEP expres-
sion that are not induced by bile acid feeding ( 135, 136 ). 
The induction of BSEP expression is not a universal prop-
erty of all species of bile acids and correlates with the FXR 
ligand specifi city ( 137, 138 ). In fact, lithocholic acid may 
act as a partial FXR antagonist to reduce BSEP expression 
( 139 ), thereby providing another potential mechanism for 
lithocholic acid’s cholestatic effects ( 140 ). The FXR stimu-
lation of BSEP expression appears to require recruitment 
of the chromatin-modifying enzymes, coactivator-associated 
arginine methyltransferase 1 (CARM1) and arginine 
methyltransferase (PRMT1), and subsequent chromatin 
remodeling ( 141, 142 ). Another potential regulator of 
BSEP is vitamin A. FXR functions as a heterodimer with 
RXR, and in vitro studies suggest that 9- cis  retinoic acid 
activation of RXR inhibits the FXR-induced transcription 
of human BSEP ( 143 ). This observation was recently con-
fi rmed and diet studies in mice showed that the combina-
tion of vitamin A-defi ciency and cholic acid feeding 
resulted in the highest levels of BSEP expression ( 144 ). 

 In addition to transcriptional regulation, there is con-
siderable evidence for posttranscriptional regulation of 
the BSEP protein localization to the canalicular mem-
brane ( 24 ). This short-term regulation enables the hepa-
tocyte to rapidly modulate bile acid secretion in response 

by prolactin and growth hormone via recruitment of 
phosphorylated Stat5 to the NTCP promoter ( 102, 103 ). 
Glucocorticoids directly induce expression of NTCP via 
glucocorticoid receptor binding to the promoter in a 
mechanism that is enhanced by PGC-1 �  and suppressed 
by SHP ( 76 ). Finally, NTCP mRNA expression is decreased 
by estrogen and increased by thyroid hormone ( 104 ). 

 NTCP transport activity is also regulated posttranscrip-
tionally. Cyclic AMP (cAMP) rapidly (within minutes) 
stimulates Na + -taurocholate cotransport in hepatocytes by 
increasing the transport maximum ( V max  ) ( 105, 106 ). This 
increase in transport activity is due to cAMP-induced move-
ment of NTCP from an intracellular compartment to the 
plasma membrane ( 68 ). The sinusoidal plasma membrane 
expression of NTCP is regulated by serine/threonine 
phosphorylation and dependent on microfi laments ( 107–
109 ). NTCP is dephosphorylated at Serine 226 ( 110 ) in 
response to cAMP, leading to increased plasma membrane 
NTCP retention. The cAMP-induced dephosphorylation 
of NTCP is dependent on its ability to increase cytosolic 
Ca 2+  and activate protein phosphatase 2B (PP2B), a calcium/
calmodulin dependent serine/threonine protein phos-
phatase ( 111 ). In addition to this PP2B-mediated pathway, 
NTCP’s microfi lament-dependent insertion and retrieval 
from the plasma membrane is regulated by PI3-kinase 
( 68 ). This PI3-kinase stimulated translocation is thought 
to be mediated in part via protein kinase C delta, as well as 
other signaling pathways ( 112–115 ). 

 BSEP 

 Functional evidence of ATP-dependent bile acid trans-
port by the canalicular membrane existed since the early 
1990s ( 23 ). After cloning and expression studies identifi ed a 
novel canalicular ABC transporter closely related to the mul-
tidrug resistance protein (MDR1)/P-glycoprotein, this 160 
kDa protein (originally named “sister of P-glycoprotein”) 
was shown to transport conjugated bile acids effi ciently 
and was subsequently renamed the bile salt export pump 
(BSEP;  ABCB11 ) ( 24 ). The properties of BSEP satisfi ed all 
the functional criteria for hepatocytic canalicular bile acid 
export, including:  1 ) preferential high affi nity transport of 
conjugated bile acids ( 116, 117 );  2 ) appropriate tissue-
specifi c expression in the liver; and  3 ) appropriate ontog-
eny of expression ( 118, 119 ). The role of BSEP as the 
major canalicular bile acid effl ux pump was confi rmed by 
the identifi cation of  ABCB11  mutations in patients with 
progressive familial intrahepatic cholestasis (PFIC) type 2, 
a hepatic cholestatic disorder characterized by biliary 
bile acid concentrations less than 1% of normal ( 120, 121 ). 
In addition to unconjugated, taurine-conjugated, and 
glycine-conjugated species of monovalent bile acids, hu-
man BSEP (but not rodent) also transports some sulfated 
bile acids such as taurolithosulfocholate ( 122 ). Whereas 
bile acids are the major physiological substrate, BSEP ap-
pears to be able to transport a limited number of drugs 
such as the HMG-CoA reductase inhibitor, pravastatin 
( 123 ). Other drugs, such as cyclosprin, rifamycin, troglita-
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tion was that feeding ASBT null mice a diet containing 
cholestyramine resulted in no further increase in fecal bile 
acid excretion. Because a bile acid binding resin would 
reduce alternative (nonASBT) passive or active mecha-
nisms for intestinal bile acid absorption, these fi ndings 
supported the conclusion that nonASBT mechanisms con-
tribute little to intestinal bile acid absorption in the mouse 
( 157 ). 

 In humans and many other species, the bile acid pool 
includes glycine conjugates, unconjugated bile acids, and 
more hydrophobic species ( 1 ). A fraction of the glycine 
conjugates and unconjugated bile acids are protonated 
under conditions of the acidic luminal surface pH in the 
intestine ( 158 ) and absorbed by passive diffusion across 
the apical brush border membrane ( 155 ). In addition to 
passive membrane diffusion, there is evidence for carrier-
mediated transport of bile acids in the proximal small 
intestine. Studies using photoactivated bile acid deriva-
tives specifi cally labeled an  � 87 kDa brush border mem-
brane protein that was present along the entire length of 
rabbit small intestine ( 159 ). Elegant in vivo uptake and 
 cis -inhibition studies using perfused jejunum demonstrated 
bile acid transport specifi city consistent with a facilitative 
carrier ( 160, 161 ). In vitro studies using rat jejunal brush 
border membrane vesicles extended those fi ndings and 
clearly demonstrated conjugated bile acid uptake operat-
ing through an anion exchange mechanism ( 162 ). The 
properties of this transport system are similar to those as-
cribed to the OATP family transporters and a candidate 
for the jejunal bile acid transporter was cloned from rat 
( 163 ). This  � 80 kDa membrane glycoprotein, Oatp1a5 
(Oatp3), exhibits expression properties, substrate specifi c-
ity, and apical membrane localization consistent with the 
in vivo and in vitro studies of proximal small intestine 
( 161, 162 ). Rodent Oatp1a5 is encoded as part of an OATP 
gene cluster and is syntenic with a region on human chro-
mosome 12p12 that includes OATP1A2 ( 164 ). Human 
OATP1A2, which shares  � 72% amino acid identity with 
rodent Oatp1a5, is expressed at the apical brush border 
membrane of human small intestinal epithelial cells and 
transports bile acids as well as a variety of drugs ( 165, 166 ) 
( 167 ). Although these fi ndings are suggestive, it should be 
noted that the intestinal level of expression for Oatp1a5/
OATP1A2 is very low compared with the ASBT ( 163, 168 ) 
and their contribution to intestinal bile acid absorption is 
thought to be small as compared with ASBT-mediated 
transport in the ileum ( 157, 169 ). 

 Regardless of the mechanism of bile acid uptake, these 
weak acids will ionize at the neutral pH of the cytosolic 
compartment, potentially trapping bile acids in the cell 
and necessitating the presence of effl ux carriers. Recent 
studies have identifi ed OST � -OST �  as a major mechanism 
responsible for intestinal basolateral membrane bile acid 
export ( 170, 171 ). Although highly expressed in terminal 
ileum, OST � -OST �  is also expressed at lower levels in 
proximal small intestine of rodents and humans ( 150, 151, 
172 ) where it can serve to export bile acids that were pas-
sively absorbed across the apical brush border membrane 
of the enterocyte. 

to bile acid fl ux and to pathophysiological conditions such 
as cholestasis ( 68 ). Another rapidly developing area of 
study is the role of membrane lipid composition in the 
regulation of BSEP and other canalicular membrane trans-
porters ( 145, 146 ). There is emerging evidence that the 
phosphatidylserine fl ippase, ATP8B1, plays a critical role 
in maintaining the phospholipid asymmetry and rigid 
cholesterol and sphingomyelin-rich exoplasmic leafl et of 
the canalicular membrane ( 147 ). In humans, ATP8B1 
defi ciency causes PFIC Type 1 (PFIC1) and BRIC Type 1 
(BRIC1) ( 145 ). Among the mechanisms responsible for 
the cholestasis, inactivation of ATP8B1 results in a reduced 
cholesterol to phospholipid ratio for the canalicular mem-
brane. This reduced cholesterol content is associated with 
a dramatic reduction in the  V max   for taurocholate transport 
by BSEP ( 146 ) but not reduced canalicular levels of BSEP 
protein ( 148 ). 

 INTESTINAL TRANSPORT OF BILE ACIDS 

 Bile acids are reclaimed through a combination of pas-
sive absorption in the proximal small intestine, active 
transport in the distal ileum, and passive absorption in the 
colon. Bile acids are actively transported in the terminal 
ileum by the well-characterized ASBT ( SLC10A2 ) ( 43, 
149 ). This sodium- and potential-driven transporter moves 
bile acids from the lumen of the small intestine across the 
apical brush border membrane. Bile acids are then shut-
tled to the basolateral membrane and effl uxed into the 
portal circulation by OST � -OST �  ( 150, 151 ). Several ob-
servations support the concept that the terminal ileum is 
the major site of bile acid reabsorption in man and experi-
mental animal models. These observations include the 
fi nding that there is little decrease in the intraluminal bile 
acid concentration prior to the ileum ( 9 ) and the appear-
ance of bile acid malabsorption after ileal resection ( 152 ). 
Subsequent studies using in situ perfused intestinal seg-
ments to measure bile acid absorption ( 153–155 ) demon-
strated that ileal bile acid transport is a high-capacity 
system suffi cient to account for reabsorption of the biliary 
output of bile acids. The general consensus from these 
studies was that ileal active transport is the major route for 
conjugated bile acid uptake whereas the passive or facilita-
tive absorption present down the length of the small intes-
tine may be signifi cant for unconjugated and some 
glycine-conjugated bile acids. However, the contribution 
of jejunal uptake to intestinal bile acid absorption in dif-
ferent species is still being debated ( 156 ). 

 In comparison to ileal absorption (described below), 
the mechanism(s) responsible for transport of bile acids 
in the proximal intestine and their quantitative signifi -
cance are not as well defi ned. In the mouse, bile acid spe-
cies are taurine-conjugated and hydrophilic thereby 
limiting their nonionic diffusion and necessitating the re-
quirement for a carrier to mediate transport across the 
enterocyte apical brush border membrane. This was con-
fi rmed by analysis of ASBT null mice in which intestinal 
bile acid absorption was largely eliminated. A key observa-
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minal bile acid concentrations for micellular solubiliza-
tion and absorption of lipids. Considering its central role 
in the enterohepatic circulation, inherited defects or dys-
functional regulation of the ASBT may play a role in the 
pathogenesis or clinical presentation of a variety of gastro-
intestinal disorders. For example, ASBT mutations were 
identifi ed as a cause of primary bile acid malabsorption, a 
rare idiopathic disorder associated with interruption of 
the enterohepatic circulation of bile acids. Patients with 
primary bile acid malabsorption present with chronic diar-
rhea beginning in early infancy, steatorrhea, fat-soluble 
vitamin malabsorption, and reduced plasma cholesterol 
levels ( 169 ). Although dysfunctional mutations were not 
found in the ASBT gene from patients with adult-onset 
forms of idiopathic bile acid malabsorption ( 190 ), aber-
rant regulation of the ASBT may still contribute to the 
phenotype in a subset of those patients ( 172 ). Indeed, a 
recent genetic study identifi ed an ASBT haplotype associ-
ated with signifi cantly reduced ileal expression of ASBT 
mRNA and protein ( 191 ). Other disorders associated with 
intestinal bile acid malabsorption that could potentially 
involve the ASBT include hypertriglyceridemia ( 192, 193 ), 
idiopathic chronic diarrhea ( 194 ), chronic ileitis ( 195 ), 
gallstone disease ( 196, 197 ), postcholecystectomy diar-
rhea, Crohn’s disease ( 198–202 ), and irritable bowel syn-
drome ( 203 ). 

 Substrate, cytokines, hormones, and sterols all regulate 
transcription of the ASBT gene. The regulation of ASBT 
expression by bile acids remains an area of controversy. 
Confl icting observations have been published, reporting 
that ASBT and/or ileal bile acid transport activity is in-
duced, repressed, or unaffected by bile acids ( 204–208 ). 
Differences between experimental paradigms, methods 
for measuring ASBT protein or activity, species, and ge-
netic background account for some of the discrepancies 
that have been observed ( 209, 210 ). The dose and mode of 
delivery of bile acid is also an important consideration, as 
cell models do not recapitulate the in vivo dynamic fl ux of 
bile acids. In addition, bile acids are cytotoxic in high con-
centrations or under conditions of static exposure, and 
can activate a variety of signaling pathways ( 6 ). As such, it 
is important to try to distinguish between “basal” feedback 
regulation of ASBT expression and more complex re-
sponses to protect the cell from bile acid-induced injury. 

 Some of the earliest support for regulation of ASBT by 
bile acids was obtained from intestinal perfusion studies in 
the guinea pig; those studies showed that the ileal bile acid 
transport capacity was decreased after bile acid feeding 
and increased following the administration of a bile acid 
binding resin ( 205 ). In the mouse and rabbit, bile acids 
can also repress ASBT expression, apparently by acting 
through FXR and SHP to antagonize LRH-1, a compe-
tence factor important for ASBT transcription ( 210, 211 ). 
A positive role for LRH-1 is supported by the fi nding that 
ASBT expression is decreased in ileum of intestine-specifi c 
LRH-1 null mice ( 75 ). In contrast, FXR is not essential for 
ASBT’s basal expression as ASBT expression is not de-
creased in ileum of FXR null mice ( 212, 213 ). For humans, 
in vitro studies using Caco-2 cells or ileal biopsies have 

 ASBT 

 Bile acids are transported actively across the ileal brush-
border membrane by the well-characterized ASBT 
( SLC10A2 ). The relationship between the hepatic, biliary, 
ileal, and renal Na + -bile acid cotransport systems was re-
solved with the cloning of the bile acid carriers from those 
tissues. The liver and ileum express distinct but related 
Na +  bile acid cotransporter genes, NTCP ( SLC10A1 ) and 
ASBT ( SLC10A2 ), whereas the ileal enterocyte, renal prox-
imal tubule cell, and cholangiocyte all express the same 
Na +  bile acid cotransporter (ASBT) ( 2 ). The inwardly di-
rected Na +  gradient maintained by the basolateral Na + /
K + -ATPase as well as the negative intracellular potential 
provide the driving force for ASBT-mediated bile acid up-
take ( 173 ). The properties of the ASBT satisfi ed all the 
functional criteria for ileal active bile acid uptake, includ-
ing:  1 ) a strict sodium-dependence for bile acid transport 
( 55 );  2 ) specifi c transport of all the major monovalent spe-
cies of bile acids with negligible uptake of other solutes 
( 51 );  3 ) specific intestinal expression in the terminal 
ileum;  4 ) similar ontogeny for rat ileal sodium-dependent 
taurocholate uptake and ASBT expression at fetal day 22 
and postnatal day 17 ( 174 );  5 ) targeted inactivation of the 
ASBT gene eliminates enterohepatic cycling of bile acid in 
mice ( 157 ); and  6 ) loss-of-function mutations in the hu-
man ASBT gene are associated with intestinal bile acid ma-
labsorption ( 169 ). 

 Regulation of ASBT expression and activity 
 ASBT is expressed in tissues that serve to facilitate the 

enterohepatic circulation of bile acids, including the api-
cal membrane of ileal enterocytes, proximal renal convo-
luted tubule cells, epithelial cells lining the biliary tract 
(cholangiocytes), and gallbladder epithelial cells ( 175–
179 ). The molecular mechanisms controlling the tissue-
specifi c expression of ASBT are not known. In the intestine, 
Na + -dependent bile acid transport activity and ASBT ex-
pression are found in villus but not crypt enterocytes ( 174, 
180 ). Expression is largely restricted to the ileum in mice, 
hamster, rats, and humans ( 181–185 ). Regulation of ASBT 
expression along the longitudinal axis of the intestine is 
not fully understood although recent studies showed that 
the transcription factor GATA4 is essential for this process. 
Remarkably, intestine-specifi c inactivation of GATA4 in 
mice results in a dramatic induction of ASBT expression 
in proximal intestine ( 186, 187 ). After injury or resection 
of distal small intestine, therapeutic options for restoring 
bile acid absorption have been limited as compensatory 
increases in ASBT expression appear to occur only in those 
remaining intestinal regions that natively expressed ASBT 
(i.e., ileum) ( 185, 188, 189 ). However, the exciting fi nding 
that GATA4 is critical for establishing the functional gradi-
ent of bile acid absorption along the cephalocaudal axis of 
the small intestine reveals a novel opportunity for induc-
ing proximal bile acid absorption by modulating the 
GATA4 pathway. 

 The enterohepatic circulation effi ciently conserves bile 
acids, thereby maintaining bile fl ow and adequate intralu-
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mans, exogenous corticosteroid (Budesonide) treatment 
increased ASBT expression in ileal biopsies, and this effect 
is mediated through glucorticorticoid receptor binding to 
specifi c response elements in the human ASBT promoter 
( 223 ). Thus, the benefi cial effects of corticosteroids in in-
fl ammatory bowel disease may involve not only an effect 
on infl ammatory cytokines but also a direct effect on 
ASBT expression ( 227 ). With regard to other nuclear re-
ceptors, ASBT gene expression is activated by peroxisome 
proliferator-activated receptor  �  (PPAR � ) ( 228 ) and by 
vitamin D nuclear receptor (VDR) ( 229 ) binding to their 
respective response elements in the ASBT promoter. 

 In addition to transcriptional regulation, ASBT is regu-
lated posttranscriptionally by modulating protein stability 
or transporter activity. The ASBT protein resides on the 
plasma membrane in lipid rafts and depleting membrane 
cholesterol using methyl- � -cyclodextrin signifi cantly re-
duced ASBT’s association with rafts and taurocholate 
transport ( 230 ). The cholesterol-depleted cells exhibited 
no change in ASBT protein expression at the plasma mem-
brane, suggesting that the decreased taurocholate uptake 
was due to reduced ASBT activity. Finally, proteosomal-
mediated degradation of ASBT is stimulated by cytokines 
such as IL-1 �  ( 231 ). The downregulation of ASBT protein 
expression correlated with a decrease in the half-life of 
ASBT from  � 6 h to  � 3 h, and the enhanced degradation 
was blocked using a c-Jun N-terminal kinase inhibitor or 
proteasome inhibitors. 

 OST � -OST �  

 The proteins responsible for bile acid export across the 
basolateral membrane of the ileal enterocyte, cholangio-
cytes, and renal proximal tubule cell have only recently 
been identifi ed. In contrast to apical transport, little was 
known regarding the mechanism and regulation of bile 
acid export across the basolateral membrane of these epi-
thelia. Several candidate ileal basolateral transporters had 
been partially characterized or implicated over the years, 
including a basolateral sodium-independent anion ex-
change activity ( 232 ), a bile acid photoprobe-labeled 54 
kDa protein enriched in the ileal basolateral membrane 
fraction ( 233 ), an alternatively spliced form of the ASBT 
( 234 ), and MRP3 (ABCC3) ( 235 ). However, none of these 
candidates fulfi lled all the predicted criteria ( 236, 237 ) 
and the identity of the basolateral bile acid transporter re-
mained an important missing link in our understanding of 
the enterohepatic circulation. The break-through in this 
area came with the elegant expression cloning of an un-
usual transporter, OST � -OST � , from the little skate ( Raja 
erinacea ) by Ned Ballatori and coworkers ( 238 ). Subse-
quently, the human and mouse orthologs of skate OST � -
OST �  were cloned and expressed in  Xenopus  oocytes where 
they transport bile acids as well as a variety of steroids 
( 239 ). As with the skate, solute transport by the mamma-
lian orthologs required coexpression of two different sub-
units: OST � , a 340, amino acid polytopic membrane 
protein, and OST � , a 128 amino acid predicted type I 

identifi ed several different potential mechanisms for bile 
acid regulation of ASBT. In one mechanism, bile acids 
were found to act through the FXR-SHP pathway to an-
tagonize RAR �  and decrease human ASBT transcription 
( 214 ). Conversely, bile acids were also found to increase 
ASBT transcription through an FXR-independent pathway 
involving the epidermal growth factor receptor and mitogen-
activated protein kinase/extracellular signal-regulated 
kinase kinase (MEK) signaling through an AP-1 element 
in the ASBT promoter ( 208 ). In vivo, several lines of evi-
dence indirectly suggest that negative feedback regulation 
of intestinal bile acid transport is operational in humans, 
including the fi ndings that retention of the bile acid ana-
log  75 Se-homocholic acid-taurine is increased in primary 
biliary cirrhosis ( 215 ) and intestinal ASBT expression is 
increased in patients with obstructive cholestasis ( 216 ). 
However, these are pathophysiological states and clearly 
more needs to be done to understand how bile acids regu-
late their own active intestinal absorption under physio-
logical conditions. A new potential pathway for the bile 
acid-mediated repression of ASBT transcription has re-
cently begun to emerge. Bile acids act through FXR to in-
duce expression of FGF15/19, which feeds back in an 
autocrine or paracrine fashion to repress ASBT expression 
( 217 ). In this model, the newly secreted FGF15/19 binds 
to its receptor, the FGFR4/ � -klotho complex, expressed on 
basolateral surface of enterocytes and signals to stabilize the 
SHP protein by inhibiting its ubiquitin/proteosome-
dependent degradation ( 218 ). The elevated levels of SHP 
could then antagonize LRH-1 or RAR �  to downregulate 
ASBT expression. 

 In addition to regulation by bile acids, ASBT mRNA ex-
pression appears to be negatively regulated by cholesterol. 
In vitro studies using Caco-2 cells showed that sterols such 
as 25-hydroxycholesterol downregulated ASBT mRNA ex-
pression and promoter activity ( 219 ). As elucidated using 
a variety of in vivo and in vitro approaches, the apparent 
underlying mechanism involves an indirect effect of 
SREBP-2 on HNF-1 � -mediated stimulation of ASBT tran-
scription ( 220 ). In general agreement with that work, the 
addition of cholesterol to a cholic acid-containing diet ap-
peared to downregulate ASBT expression and intestinal 
bile acid absorption by an FXR-independent mechanism 
( 221 ). 

 Ileal infl ammation is associated with bile acid malab-
sorption ( 199 ), and ASBT expression is decreased in ani-
mal models of ileitis ( 222 ) and in ileal biopsies from 
patients with Crohn’s disease ( 223 ). Investigation of the 
underlying mechanism revealed that cytokines decrease 
ASBT gene expression by acting through an activator-
protein-1 (AP-1) site, which binds a c- jun /c-fos heterodi-
mer ( 224, 225 ). In the setting of intestinal infl ammation, 
c-fos is phosphorylated and translocates into the nucleus 
where binding of the downstream AP-1 element leads to 
transcriptional repression of ASBT expression ( 225 ). Cor-
ticosteroids have had a long-standing use in the treatment 
of infl ammatory bowel disease. Exogenous corticosteroids 
can induce precocious expression of ASBT and also up-
regulate ASBT expression in mature animals ( 226 ). In hu-
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acid transport ( 247, 248 ). Of particular interest with re-
gard to human disease, this phenotype of decreased bile 
acid absorption coupled with an inability of the liver to 
synthesize additional bile acids to maintain a normal pool 
that was found in the OST �  null mice had been described 
by the late Z. Reno Vlahcevic ( 249 ) in a study of gallstone 
patients that was published in 1970. Whether OST � -OST �  
or the FGF15/19 signaling pathway play a role in the 
pathophysiology of gallstone disease is an interesting ques-
tion that is beginning to be explored ( 250 ). 

 Regulation of OST � -OST �  expression and activity 
 Expression of both subunits is essential for function 

( 150, 241 ) and as such, the two subunit genes appear to be 
regulated coordinately. Bile acid feeding ( 213 ), adminis-
tration of a synthetic FXR agonist ( 213, 245, 251 ), or in-
duction of cholestasis ( 33, 252 ) increases expression of 
OST �  and OST �  mRNA and multiple groups identifi ed 
functional FXR responsive elements in the mouse ( 213, 
251 ) and human ( 240, 251 ) OST �  and OST �  promoters. 
The promoters for OST �  and OST �  include functional 
responsive elements for LRH-1 as well as FXR, providing a 
mechanism for both negative as well as positive regulation 
by bile acids ( 213 ). Whereas positive regulation by bile ac-
ids is dominant, this push-pull form of dynamic regulation 
would enable the cell to fi nely titrate expression of OST � -
OST �  to match the fl ux of bile acids. The predominantly 
positive regulation would also ensure effi cient export of 
bile acids thereby preventing cellular injury due to intra-
cellular accumulation. In support of a potential role for 
LRH-1, ileal expression of OST �  and OST �  was decreased 
in the intestine-specifi c LRH-1 null mice ( 75 ). In addition 
to being regulated by FXR, LXR potentially induces OST �  
and OST �  expression by operating via an inverted repeat-1 
element shared with FXR ( 253 ). 

 RENAL BILE ACID TRANSPORT 

 A fraction (10% to 50%, depending on the bile acid spe-
cies) of the bile acids returning in the portal circulation 
escapes hepatic extraction and spills into the systemic cir-
culation. The binding of bile acids to plasma proteins 
reduces glomerular filtration and minimizes urinary 
excretion of bile acids. In healthy humans, the kidney fi l-
ters approximately 100 µmol of bile acids each day. Re-
markably, only 1 to 2 µmol is excreted in the urine because 
of a highly effi cient tubular reabsorption ( 254 ). Even in 
patients with cholestatic liver disease in whom plasma bile 
acid concentrations are elevated, the 24-h urinary excre-
tion of nonsulfated bile acids is signifi cantly less than the 
quantity that undergoes glomerular fi ltration ( 254–257 ). 
Subsequent studies have shown that bile acids in the glom-
erular fi ltrate are actively reabsorbed from the renal tu-
bules by a sodium-dependent mechanism ( 258, 259 ) and 
this process contributes to the rise in serum bile acid con-
centrations in patients with cholestatic liver disease. 

 As in the ileum, the renal proximal tubule epithelium 
expresses the ASBT as a salvage mechanism to conserve 

membrane protein. Soon after their cloning, the mouse 
OST � -OST �  was identifi ed as a candidate ileal basolateral 
bile acid transporter using a transcriptional profi ling ap-
proach ( 150 ). Support for a role of OST � -OST �  in baso-
lateral bile acid transport includes:  1 ) intestinal expression 
of OST �  and OST �  mRNA that generally follows that of 
the ASBT with the highest levels in ileum ( 150, 151, 172 ), 
 2 ) appropriate cellular localization on the lateral and basal 
membranes of ileal enterocyte ( 150 ),  3 ) expression of 
OST � -OST �  on the basolateral membrane of hepatocytes, 
cholangiocytes, and renal proximal tubule cells, other 
membranes exhibiting bile acid effl ux ( 151 ),  4 ) effi cient 
transport of the major bile acid species ( 150, 151 ), and  5 ) 
expression of OST � -OST �  is positively regulated by bile 
acids ( 213, 240 ). Although the functional role of the indi-
vidual subunits has not yet been determined, coexpression 
and assembly of both subunits into a complex is required 
for their traffi cking to the plasma membrane and solute 
transport ( 150, 241 ). 

 No inherited defects have been reported for the OST �  
or OST �  genes in humans; however, targeted inactivation 
of the OST �  gene in mice resulted in impaired intestinal 
bile acid absorption and altered bile acid metabolism ( 170, 
171 ). In contrast to ASBT null mice that exhibited the pre-
dicted sequelae associated with intestinal bile acid malab-
sorption ( 157, 242 ), the OST �  null mice exhibited a more 
complex phenotype. Studies using everted gut sacs ( 171 ) 
or intra-ileal administration of [ 3 H]taurocholate ( 170 ) 
demonstrated a signifi cant reduction in  trans -ileal trans-
port in OST �  null mice. However, fecal bile acid excretion 
was not increased as had been observed in ASBT null mice 
( 157 ) or patients with ASBT mutations ( 169 ). These re-
sults were particularly perplexing because the whole body 
bile acid pool size was signifi cantly decreased, a hallmark 
of intestinal bile acid malabsorption. Examination of the 
FGF15/19 signaling pathway provided a solution to this 
conundrum (  Fig. 2  ). As predicted from this model, OST �  
null mice had signifi cantly increased FGF15 expression 
and reduced hepatic Cyp7a1 expression ( 170, 171 ). These 
fi ndings further supported a central role of FGF15/19 in 
regulating hepatic bile acid synthesis ( 243, 244 ) as recently 
confi rmed in the liver and intestine-specifi c FXR and 
LRH-1 null mice and reviewed by the late Dr. Roger Davis 
( 75, 245, 246 ). 

 In addition to demonstrating an important role for 
OST � -OST �  in bile acid transport and metabolism, this 
work had important physiological implications. Whereas 
blocking apical bile acid uptake using bile acid seques-
trants or ASBT inhibitors dramatically reduces the ileal 
expression of FGF15 and increases hepatic Cyp7a1 expres-
sion ( 242 ), a block in basolateral bile acid transport in-
creases FGF15 expression and reduces hepatic bile acid 
synthesis. This combination of reduced return of bile acids 
in the enterohepatic circulation and reduced bile acid syn-
thesis may have therapeutic benefi t in various forms of 
cholestatic liver disease. Conversely, the reduction in bile 
acid synthesis associated with inhibition of basolateral 
transport could predispose to elevated plasma cholesterol 
levels in marked contrast to inhibition of apical ileal bile 
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balanced against any risk of increased bile acid-induced 
kidney cell injury ( 265 ). 

 FUTURE RESEARCH 

 With the identifi cation of all the major plasma mem-
brane bile acid transporters that maintain the enterohe-
patic circulation, the focus is shifting toward how these 
carriers control the extracellular and intracellular levels of 
bile acids under different physiological and pathophysio-
logical conditions. In addition to its role as a detergent to 
solubilize biliary and dietary lipids, bile acids activate a va-
riety of nuclear receptors and signaling pathways ( 5, 6 ). 
There is a growing appreciation of the role of bile acids as 
“hormones” to modulate lipid and glucose metabolism 
( 7 ). By controlling the fl ux of bile acids in the enterohe-
patic circulation, the bile acid transporters have an oppor-
tunity to modulate bile acid signaling and metabolic 
regulation. As such, it will be important to further under-
stand the regulation of these carriers and their relation-
ship to metabolism and human disease. Investigators 
have also begun to explore the effects of genetic single-
nucleotide polymorphisms and epigenetic alterations on 
transporter expression ( 266 ) but much work still needs to 

bile acids ( 55, 176 ). The overall pattern of bile acid mem-
brane transporter expression appears to be similar for the 
ileal enterocyte and renal proximal tubule cells. In addi-
tion to expressing the ASBT on the apical surface, renal 
epithelial cells express OST � -OST �  ( 151 ) on the basolat-
eral membrane thereby completing the circuit for effi cient 
apical absorption from the tubule lumen and basolateral 
export into the systemic circulation. 

 In addition to the physiological implications, identifi ca-
tion of the ASBT in kidney has therapeutic consequences. 
Potent inhibitors of the ileal apical sodium bile acid trans-
porter have been developed as potential therapies for hy-
percholesterolemia ( 248, 260–262 ). Because the same 
transporter is expressed in the kidney, these inhibitors 
could be used to block renal reclamation of bile acids and 
increase urinary bile acid output. This would create a 
shunt for elimination of hepatotoxic bile acids; the pre-
dicted decrease in serum and hepatic bile acid concentra-
tions may relieve the cholestasis-associated pruritus and 
slow the progression of hepatocellular degeneration. Al-
though as yet untested, a variation of this therapeutic ap-
proach was originally suggested almost 30 years ago by 
Barbara Billing and colleagues (working with Dame Sheila 
Sherlock) ( 263, 264 ). However, the potential hepatopro-
tective effects of such an intervention must be carefully 

  Fig.   2.  Model for differential regulation of hepatic bile acid synthesis. Bile acids are taken up by the ASBT 
and activate the nuclear receptor FXR to induce expression of OST � -OST �  and FGF15 in the ileal entero-
cyte. The bile acids are then released into the portal circulation via basolateral OST � -OST �  and reabsorbed 
by the hepatic sinusoidal (basolateral) transporter, NTCP. Bile acids are secreted across the apical (canalicu-
lar) membrane into the bile canaliculus via the BSEP and undergo another round of enterohepatic cycling. 
Ileal-derived FGF15 signals through its receptor, FGFR4, to repress Cyp7a1 expression and bile acid synthe-
sis. A block in ileal brush border membrane uptake of bile acids results in downregulation of FXR target 
genes such as FGF15. The decreased FGF15 production and reduced return of bile acids to the liver leads to 
increased Cyp7a1 expression, increased hepatic conversion of cholesterol to bile acids, and reduced plasma 
cholesterol levels. This is the classical mechanism of action for the bile acid sequestrants. In contract, a block 
in ileal basolateral bile acid export leads to increased bile acid retention and increased FXR-mediated activa-
tion of FGF15 expression. Despite reduced return of bile acids in the enterohepatic circulation, the ileal-
derived FGF15 signals to repress hepatic Cyp7a1 expression and bile acid synthesis. (From Davis and Attie 
( 246 ); copyright 2008 National Academy of Sciences, USA).   
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be done. In addition to the bile acid binding resins and 
ursodeoxycholic acid, new compounds are in develop-
ment that target bile acid signaling pathways, such as 
nor-ursodeoxycholic acid, synthetic FXR agonists, 
FXR modulators, and agonists for the bile acid-activated 
G-protein coupled receptors ( 5, 267 ). It will be important 
to understand how these compounds affect the bile acid 
transporters in animal models and patients. Other fertile 
areas for translational investigation include the interac-
tion of drugs with BSEP as a mechanism for drug-induced 
cholestasis, the therapeutic utility of ASBT inhibitors to 
lower plasma cholesterol levels and improve insulin resis-
tance, the utility of ASBT or OST � -OST �  inhibitors to re-
lieve the hepatic bile acid burden in some forms of 
cholestatic liver disease, and the modulation of intestinal 
GATA4 activity to restore intestinal bile acid absorption 
following ileal disease or resection. So, although we have 
learned a great deal about the bile acid transporters, im-
portant questions remain about the role of these impor-
tant ferrymen in human health and disease.  
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